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The spatial signatures of retrograde spanwise vortices in wall turbulence are assessed
from particle-image velocimetry measurements in the streamwise–wall-normal plane
of a zero-pressure-gradient turbulent boundary layer at Reτ ≡ u∗δ/ν = 2350. The
present results suggest that a proportion of retrograde spanwise vortices have a well-
defined spatial relationship with neighbouring prograde vortices. Two-point cross-
correlations and conditionally averaged velocity fields given a retrograde vortex
reveal that such structures are typically oriented either upstream of and below or
downstream of and above a prograde core. While these pairings are consistent with
the typical-eddy patterns reported by Falco and co-workers, we offer an alternative
interpretation for a proportion of these retrograde/prograde pairs. In particular, the
arrangement of a retrograde spanwise vortex upstream of and below a prograde
core is also consistent with the spatial signature revealed if an omega-shaped hairpin
structure were sliced through its shoulder region by a fixed streamwise–wall-normal
measurement plane.

1. Introduction
Many studies support the existence of hairpin-like structures in wall-bounded

turbulent flows (Theodorsen 1952; Head & Bandyopadhyay 1981; Smith et al.
1991; Zhou et al. 1999; Adrian, Meinhart & Tomkins 2000; Ganapathisubramani,
Longmire & Marusic 2003, among many others). The last four efforts also reveal that
these vortices streamwise-align to form larger-scale structures termed vortex packets
that are characterized by an inclined interface formed by the heads of the structures
as well as a region of large-scale streamwise momentum deficit beneath the interface
due to the collective induction of the vortices. When sliced in the streamwise–wall-
normal plane, the heads of the individual hairpins appear as spanwise vortex cores
with ωz < 0, where ωz is the fluctuating spanwise vorticity, and strong ejections of
low-speed fluid are observed upstream of and below each head due to the collective
induction of the hairpin’s head and leg(s). Spanwise vortices for which ωz < 0 are
termed prograde spanwise vortices herein since their rotation is in the same sense as
the mean shear. Recent work by Wu & Christensen (2006) shows that the largest
populations of prograde spanwise vortices, most of which bear spatial signatures
consistent with hairpin heads, occur in the region y < 0.3δ.

Retrograde spanwise vortices, positive ωz cores, have also been observed in wall
turbulence. Falco (1977, 1983, 1991) present evidence of ‘typical eddies’ in the outer
region which have spatial characteristics consistent with ring-like structures. The flow
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visualizations and an idealized schematic of these structures in Falco (1977) show that
typical eddies appear as spatially coincident prograde and retrograde spanwise vortices
when sliced in the streamwise–wall-normal plane. Falco (1977, 1983, 1991) offer little
discussion regarding a preferred orientation for typical eddies except to state that
the idealized schematic in Falco (1977) (which portrays the prograde core above and
slightly downstream of the retrograde core) represents the “commonly-observed view”
of such a structure in the streamwise–wall-normal plane. More recently, Klewicki &
Hirschi (2004) observed that near-wall shear layers often occur in close proximity to
clusters of prograde structures as well as adjacent regions of opposing-sign ωz, with
the retrograde event either above or below the prograde event.

The generation of such ring-like structures may be related to the pinch-off and
reconnection of the legs of existing hairpin structures as observed by Moin, Leonard
& Kim (1986), Smith et al. (1991) and Bake, Meyer & Rist (2002). Alternatively,
Tomkins & Adrian (2003) proposed the generation of isolated retrograde structures
via the spanwise merger of hairpin structures. Another possibility is that some
fraction of retrograde structures occur in tandem with an adjacent prograde structure
via a single streamwise-aligned vortex structure, possibly a hairpin. Hambleton,
Hutchins & Marusic (2006) computed a linear stochastic estimate of the conditionally
averaged fluctuating velocity field given a retrograde spanwise vortex at y = 0.4δ in the
streamwise–wall-normal plane and observed a prograde spanwise vortex positioned
downstream of (by 0.5δ) and above (at y ≈ δ) the retrograde core. They conjectured
this pattern to be the imprint of a slice through a large-scale vortex ring or omega-
shaped vortex loop. Hambleton et al. (2006) also noted that estimates of similar
fields for retrograde vortices closer to the wall did not yield spatially coincident
prograde cores. Regardless of their origin, Wu & Christensen (2006) report that
retrograde spanwise vortices occur most frequently in the region 0.15δ < y < 0.25δ,
although prograde spanwise vortices are still found to outnumber retrograde cores by
approximately 2:1 in this wall-normal region. In addition, few retrograde structures
were identified at the inner boundary of the log layer. Finally, that work reveals
an increase in the fraction of retrograde structures relative to prograde vortices in
the outer layer with Reynolds number (Re), indicating that such structures may
play an increasingly important role at higher Re. The present effort documents the
spatial signatures of retrograde spanwise vortices and explores their relationship with
neighbouring prograde cores.

2. Experiment
The experimental data utilized herein is a subset of measurements reported by

Wu & Christensen (2006). Two-thousand five-hundred instantaneous velocity (u, v)
fields were acquired by particle-image velocimetry (PIV) over a δ×δ field of view in the
streamwise–wall-normal (x,y) plane of a zero-pressure-gradient turbulent boundary
layer at Reτ ≡ u∗δ/ν =2350. The wind-tunnel facility utilized for these measurements
has a documented turbulence intensity of 0.16% in the free stream and the boundary
layer develops over a 6.1 m long hydraulically smooth flat plate (Meinhart 1994). The
friction velocity, u∗ =

√
τw/ρ, and the viscous length scale, y∗ = ν/u∗, were determined

using the Clauser chart method. The PIV images were interrogated using two-
frame cross-correlation methods which yielded nearly 35 000 vectors per instantaneous
velocity field with vector grid spacings in inner units of �x+ = �y+ = 12.3. Table 1
summarizes the relevant flow parameters and the reader is directed to Wu &
Christensen (2006) for further experimental details.
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Reτ Reθ U∞ δ θ u∗ y∗ �x+ �y+

− − (m s−1) (mm) (mm) (m s−1) (µm) − −

2350 8330 10.0 103.1 10.1 0.36 43.9 12.3 12.3

Table 1. Summary of boundary layer characteristics and experimental parameters.

3. Instantaneous evidence
Determining the spatial characteristics of retrograde spanwise vortices requires

effective visualization of such structures in the instantaneous velocity realizations.
While Galilean decomposition reveals vortices advecting at a fixed advection velocity
(Uc) and is often most effective when one wishes to visualize the local motions
induced by vortices, it is of less use as a global identification tool when the advection
velocities of the structures have spatial dependence. Alternatively, embedded structure
can be revealed in a Galilean-invariant manner through analysis of the local velocity
gradient tensor. One such technique is swirling strength (λci) – the imaginary part
of the complex eigenvalue of the local velocity gradient tensor (Zhou et al. 1999).
While λci does not retain the rotational sense of the identified swirling motion, one
can define

Λci(x, y) = λci(x, y)
ωz(x, y)

|ωz(x, y)| , (3.1)

which assigns the sign of the fluctuating spanwise vorticity to λci , facilitating
differentiation between prograde (Λci < 0) and retrograde (Λci > 0) spanwise vortices.

Identifying the boundaries of individual vortices using Λci requires a suitable
threshold. Wu & Christensen (2006) found that a universal threshold, independent
of both y and Re, can be achieved through normalization of Λci(x, y) with its root-
mean-square (RMS), Λrms

ci (y) (a similar threshold definition is offered by Nagaosa &
Handler (2003) for vortex identification via the second invariant of ∇u). A threshold
of |Λci(x, y)|/Λrms

ci (y) � 1.5 was found to effectively define the boundaries of vortex
cores while minimizing the influence of experimental noise associated with calculation
of the velocity gradients (the reader is directed to Wu & Christensen (2006) for a
more complete discussion of this methodology). Both Galilean decomposition and Λci

with this threshold are employed herein to study the spatial signatures of retrograde
spanwise vortices.

Figure 1(a) presents a representative Galilean-decomposed instantaneous velocity
field in the streamwise–wall-normal plane of a turbulent boundary layer at Reτ = 2350,
with the associated Λci field presented as figure 1(b). Several prograde and retrograde
spanwise vortices are visible in the Galilean decomposition, each of which has a
cluster of non-zero Λci associated with it. Five streamwise-aligned prograde vortices
(labelled A–E) are noted near (x, y) = (0.25δ, 0.1δ) with each vortex exhibiting a
strong ejection of fluid away from the wall just below and upstream of its core. These
spatial characteristics are consistent with the hairpin vortex signature suggested by
Adrian et al. (2000), indicating that these prograde spanwise vortices are the heads
of hairpin vortices. This train of vortices forms a tent-like interface and a large-scale
region of streamwise momentum deficit is observed below the interface due to the
collective induction of the vortices, consistent with the vortex-packet observations of
Adrian et al. (2000). In addition, several other Λci clusters are noted in figure 1(b) at
locations where swirling motions are not observed in the velocity field. These clusters
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Figure 1. (a) Galilean-decomposed velocity field in the streamwise–wall-normal plane at
Reτ = 2350 with Uc = 0.81U∞. (b) Retrograde (red) and prograde (blue) Λci calculated from
the velocity field in (a). The dashed line highlights the tent-like interface of the visualized
packet.

represent spanwise vortices that are not moving with the advection velocity chosen
for the Galilean decomposition.

Two retrograde vortices are also revealed in figure 1 (labelled F and G). The insets
of figure 1(a) present enlarged views of the local velocity fields around these two
retrograde vortices, with each retrograde structure appearing in close proximity to a
prograde vortex just above and downstream of its core. Further, while a few isolated
retrograde structures are apparent in the Λci field, a majority of them appear in
close proximity to prograde cores in various orientations. Several possible pairings
are highlighted in figure 1(b) using dashed-line bounding boxes, with the orientation
of a retrograde core upstream of and below a prograde core occurring most often in
this realization. In contrast, many of the prograde vortices occur in isolation rather
than in tandem with retrograde structures.

4. Statistical evidence
4.1. Two-point correlations

Two-point spatial correlations between the swirling strengths of prograde and
retrograde vortices are calculated to further explore the spatial characteristics of
retrograde cores, particularly their relationship with neighbouring prograde vortices.
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Figure 2. Two-point cross-correlation coefficient between Λr
ci and Λ

p
ci , ρΛrΛp , at yref = 0.2δ.

Each instantaneous Λci field is divided into a prograde field as

Λ
p
ci(x, y) =

{
Λci(x, y) if Λci(x, y) � −1.5Λrms

ci (y),

0 otherwise,
(4.1)

and a retrograde field as

Λr
ci(x, y) =

{
Λci(x, y) if Λci(x, y) � +1.5Λrms

ci (y),

0 otherwise,
(4.2)

using the aforementioned threshold, which yields efficient separation of prograde
and retrograde cores and facilitates calculation of the two-point cross-correlation
coefficient

ρΛrΛp (rx, y) =

〈
Λr

ci(x, yref )Λ
p
ci(x + rx, y)

〉
σΛr (yref )σΛp (y)

, (4.3)

where σΛr and σΛp are the RMS of Λr
ci and Λ

p
ci , respectively.

Given that the largest populations of retrograde vortices occur in the range 0.15δ <

y < 0.25δ (Wu & Christensen 2006), figure 2 presents ρΛrΛp at yref = 0.2δ. The cross-
correlation coefficient is zero at the event location and negative elsewhere, as expected,
since we are cross-correlating retrograde swirl with prograde swirl. The cross-
correlation coefficient also displays two definitive, yet broad, regions of enhanced
correlation which represent preferred orientations of prograde structures relative to
retrograde cores. The first region occurs in quadrant one of this plot, downstream
of and above the event location (rx, y) = (0, yref ), and its position of maximum
correlation is denoted ‘A’ in figure 2. The second region of enhanced correlation
(labelled ‘B’) is weaker than the first and occurs in quadrant three – upstream of
and below the event location. One can approximate these orientations by a ‘mean’
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radial distance from the event location, d , and a ‘mean’ angle relative to horizontal,
θ , yielding d+

A = 135 (dA = 0.058δ) and θA = 65◦ for peak location A and d+
B = 103.5

(dB = 0.044δ) and θB = 230◦ for peak location B. However, it should be noted that both
regions of correlation span regions that are broad in both angle (30◦ < θA < 90◦ and
210◦ <θB < 290◦) and distance relative to the reference location, indicating that the
relative angle and spacing between correlated instantaneous retrograde and prograde
structures can fluctuate.

While the magnitude of ρΛrΛp is small at A and B in figure 2 compared to the limiting
case of perfect correlation between spatially correlated instantaneous prograde and
retrograde structures in these orientations (ρΛrΛp ≈ −0.5), this limiting case would
only be possible if the angle and spacing between the structures were identical for
all instantaneous pairs and there were no uncorrelated prograde and/or retrograde
structures in the vicinity to generate de-correlation. Clearly such an ideal case should
not be expected in a flow that is marked by strong turbulent fluctuations. As such,
fluctuations in the angle and spacing between spatially correlated instantaneous
prograde and retrograde structures should be expected and probably account for the
relatively low values of ρΛrΛp observed in figure 2. This hypothesis is validated by
considering a model problem in which a large ensemble of artificial Λr

ci and Λ
p
ci fields is

generated wherein only spatially correlated retrograde and prograde spanwise vortices
are present and oriented at angles and distances equal to the positions of peaks A and
B in figure 2 (50% at each orientation for simplicity). Slight random fluctuations of
±7.5◦ about θA and θB and ±0.015δ about dA and dB are then imposed for each vortex
pair and the two-point correlation coefficient is computed. While idealized, this model
problem yields values and spatial extents of ρΛrΛp consistent with those presented in
figure 2 (ρΛrΛp = −0.098 for the model problem compared to ρΛrΛp = −0.06 for peak
A in figure 2, for example). This consistency substantiates the interpretation of peaks
A and B as mean preferred orientations of prograde spanwise vortices relative to
retrograde cores about which slight fluctuations in angle and spacing are observed.

4.2. Spatial orientations of neighbouring retrograde and prograde vortices

Given the preferred spatial orientations of prograde vortices relative to retrograde
cores observed in ρΛrΛp , this relationship is explored further by considering
histograms of the spacing (d) and angular orientation (θ) of instantaneous, spatially
coincident retrograde and prograde vortices. Each retrograde vortex at y =0.2δ in the
instantaneous Λci fields is identified, its closest prograde neighbour is determined, and
the spacing and angular orientation of the prograde core relative to the retrograde
vortex are then assessed. Figures 3(a) and 3(b) present histograms of d and θ ,
respectively, at y = 0.2δ. Distances in the range 50 < d+ < 200 (0.021 < d/δ < 0.085)
are observed with a peak near d+ =100 (d = 0.042δ), while broad peaks in the
angle histogram occur at approximately θ =70◦ and 260◦. These characteristics are
consistent with the character of ρΛrΛp .

4.3. Conditionally averaged velocity fields

Conditionally averaged velocity fields given the presence of a retrograde vortex are
also computed to uncover its average velocity signature. These averages are accom-
plished by centring a bounding box of width and height 0.2δ around each identified
retrograde vortex at y =0.2δ and the local velocity field contained within this box is
extracted. The instantaneous advection velocity of each identified retrograde vortex is
removed, yielding the local velocity field in the reference frame of the retrograde core.
Since figures 2 and 3(b) reveal clear orientation preferences between retrograde and
prograde structures, the identified retrograde vortices are sorted into four ensembles
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Figure 3. Histograms of (a) spacing, d , and (b) angular orientation, θ , between identified
retrograde spanwise vortices at y =0.2δ and their closest prograde neighbours.

based upon the angular orientation of their closest prograde neighbour: 0◦ � θ < 90◦,
90◦ � θ < 180◦, 180◦ � θ < 270◦ and 270◦ � θ < 360◦ (hereafter referred to as quadrants
one to four, respectively). Conditional averages are then computed for each orientation
subset.

Figure 4(a–d) presents conditionally averaged velocity fields for retrograde vortices
centred at y = 0.2δ computed for each of the quadrants given above. We first consider
the conditionally averaged velocity field for a retrograde spanwise vortex whose closest
prograde neighbour resides in quadrant one. This subset constitutes approximately
26% of the total number of identified retrograde vortices at y =0.2δ (1401 retrograde
vortices in total) and the corresponding conditionally averaged velocity field presented
in figure 4(a) reveals a well-defined prograde vortex oriented downstream of and above
the retrograde core at an angle of approximately 47◦ and spacing of 103y∗ (= 0.044δ).
This orientation is consistent with the preferences noted in ρΛrΛp and the histograms
of spacing and angular orientation. In addition, this spatial velocity signature is quite
similar to that observed for the retrograde structures identified in figure 1(a). As such,
a clear preference exists for some retrograde vortices at y = 0.2δ to be oriented below
and upstream of neighbouring prograde cores.

The conditionally averaged velocity field for the quadrant-three orientation, for
which both ρΛrΛp and the histograms of spacing and orientation reveal a preference,
is presented in figure 4(c). The retrograde samples included in this average comprise
roughly 26% of the retrograde vortices at y = 0.2δ and the conditional average
reveals a well-defined prograde vortex below and upstream of the retrograde core
with a relative spacing of 0.046δ (=108y∗) at an angle of 220◦. Finally, the quadrant-
two (figure 4b) and quadrant-four (figure 4d) ensembles, which account for 25% and
23% of the retrograde vortices at y = 0.2δ, respectively, reveal average velocity fields
devoid of prograde vortices.

While the velocity fields in figure 4 indicate that retrograde vortices are often
related to neighbouring prograde vortices oriented in quadrants one and three with
a spacing of approximately 100y∗, it is not clear whether the opposite is true. That
is, do a majority of prograde vortices occur in tandem with neighbouring retrograde
structures? While most of the instantaneous prograde spanwise vortices observed in
figure 1 appear to occur in isolation, conditional averages are computed to further
explore this possibility. Figures 5(a) and 5(b) present conditionally averaged velocity
fields given a prograde vortex at y = 0.2δ oriented in quadrants one and three,
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Figure 4. Conditionally averaged velocity fields given a retrograde vortex at y = 0.2δ for
which its closest prograde vortex is oriented in quadrants (a) one, (b) two, (c) three and
(d) four relative to the retrograde core.

respectively, relative to their closest retrograde neighbours. (Given the patterns noted
in figure 4, only quadrant one and three orientations are presented. The quadrant two
and four subsets yield similar patterns.) Each of these conditionally averaged prograde
structures displays a closed streamline pattern with clockwise rotation and a strong
ejection of low-speed fluid away from the wall, consistent with the hairpin vortex
signature offered by Adrian et al. (2000); however, each field is devoid of retrograde
structures.

However, when these prograde conditional averages are further restricted to only
include those prograde vortices that are within 150y∗ of their closest retrograde
neighbour, based on the results in figures 2–4, a different pattern emerges. Figure 5(c)
presents this conditional average for the quadrant-one orientation and reveals a
retrograde vortex oriented at approximately 240◦ relative to the prograde vortex core
(or equivalently a prograde structure oriented at approximately 60◦ relative to the
retrograde core). This velocity signature is nearly identical to that observed in the
conditionally averaged velocity field given a retrograde vortex with its closest prograde
neighbour in quadrant one (figure 4a). In contrast, the conditionally averaged field
for a prograde vortex oriented in quadrant three relative to its closest retrograde
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Figure 5. (a,b) Conditionally averaged velocity fields given a prograde vortex at y = 0.2δ
oriented in quadrants one and three, respectively, relative to its closest retrograde neighbour.
(c,d) Same as (a,b) except averages are also restricted to prograde/retrograde neighbours
spaced within 150y∗.

neighbour (figure 5d) is devoid of a retrograde core and simply resembles the
hairpin-vortex signature of Adrian et al. (2000). As such, while most prograde vortices
in the quadrant-one orientation and within 150y∗ of their closest retrograde neigh-
bours show a clear orientation preference, most prograde vortices in the quadrant-
three orientation are randomly oriented relative to their closest retrograde neighbours.

5. Discussion and conclusions
Instantaneous evidence is presented supporting a spatial relationship between

retrograde and prograde spanwise vortices near the outer edge of the log layer
where the retrograde populations are largest (Wu & Christensen 2006). The present
results suggest that many retrograde vortices occur in tandem with neighbouring
prograde cores with angular orientations 40◦ <θ < 90◦ and 220◦ < θ < 290◦ (relative
to the retrograde cores) and a mean spacing of approximately (100–150)y∗. These
characteristics are observed in spatial cross-correlations of retrograde and prograde
swirling strength, histograms of the spacing and angular orientation between identified
retrograde vortex cores and their closest prograde neighbour and conditional averages
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Figure 6. (a) Three-dimensional visualization of a hairpin vortex packet, adapted from
Zhou et al. (1999), illustrating the existence of omega-shaped hairpin structures. (b) Spatial
signature revealed if the structure in (a) were sliced through one of its shoulders by a
streamwise–wall-normal measurement plane.

of the local velocity fields around identified retrograde vortices. Further, the preferred
alignment of retrograde vortices either above or below prograde cores is consistent
with the orientations of adjacent regions of opposing-sign ωz observed in the vicinity
of near-wall shear layers by Klewicki & Hirschi (2004). In contrast, most prograde
spanwise vortices occur in isolation, except for a small subset of prograde cores that
appear related to retrograde structures oriented upstream of and below and spaced
at approximately (100–150)y∗ from these prograde cores.

The spatial relationships between retrograde and prograde spanwise vortices repor-
ted herein are not inconsistent with the flow-visualization observations of spatially
coincident prograde and retrograde cores by Falco and co-workers. As noted earlier,
Falco (1977, 1983, 1991) present many flow visualizations and schematics of spatially
coincident prograde and retrograde vortex cores in the streamwise–wall-normal plane,
nearly always with the prograde core oriented above and downstream of the retrograde
core. This arrangement is consistent with one of the preferred orientations presented
herein. However, an alternative argument for this orientation preference can be made
by supposing that some fraction of these spatially coincident prograde and retrograde
cores are related to one another through a single streamwise-aligned, omega-
shaped hairpin structure. Evidence supporting the existence of omega-shaped hairpin
structures has been presented previously in the literature (Zhou et al. 1999; Bake
et al. 2002, for example).

Figure 6(a) presents a three-dimensional visualization of a vortex packet originally
reported in Zhou et al. (1999, figure 3c) that illustrates the possible development
of hairpin structures with distinct omega shapes around their shoulders and heads.
Similar omega-shaped structures are also presented in Bake et al. (2002). If the
hairpin in figure 6(a) were sliced in the streamwise–wall-normal plane through its
spanwise centre, a single prograde spanwise vortex associated with the head of the
hairpin would be observed. If, however, this structure were sliced through either of its
shoulders, two spanwise vortices would be revealed as illustrated in figure 6(b): one
with clockwise rotation (a prograde structure) above and downstream of a second
vortex core with counterclockwise rotation (a retrograde vortex). While this spatial
signature is consistent with the patterns presented in the insets of figure 1(a) and the
conditionally averaged velocity field of figure 4(a), the probability that this orientation
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is indeed associated with the shoulder of an omega-shaped hairpin is strengthened
by the velocity pattern observed in the conditionally averaged field given a prograde
vortex oriented in quadrant one relative to its closest retrograde neighbour with
a spacing of 150y∗ or less (figure 5c). Indeed, the prospect of slicing through the
shoulder of an omega-shaped hairpin on occasion in a fixed streamwise–wall-normal
flow visualization or PIV measurement is certainly a reasonable one given that a
preferred spanwise alignment of such structures relative to a fixed measurement
plane cannot be expected. In addition, this alternative explanation is not inconsistent
with the observations of Falco and co-workers since significant evidence exists that
hairpins can, under certain conditions, pinch off at their legs and reconnect to form
ring-like structures (Moin et al. 1986; Smith et al. 1991; Bake et al. 2002). Finally,
the recent paper by Hambleton et al. (2006) includes a similar interpretation of
coincident retrograde and prograde spanwise vortices observed in the estimate of the
conditionally averaged velocity field given a retrograde core at y =0.4δ as a slice
through either a large-scale vortex ring or an omega-shaped vortex loop, but for
structures well outside the log layer and of size O(δ).

With regard to the observations of retrograde vortices above and downstream of
prograde cores – the second preferred, albeit weaker, orientation observed herein
(figure 4c) – there are several potential explanations. The first, and simplest, is that
this pattern is the imprint of detached ring-like structures that preferentially align
themselves into this particular orientation (possibly due to interactions with the
surrounding turbulence and/or the wall). On the other hand, it is also possible that
retrograde/prograde pairs in the quadrant-three orientation are not related via a
single vortex but rather represent the imprint of two different, yet spatially correlated,
vortical structures. In the context of the hairpin-packet paradigm, this pattern could
represent the imprint of a hairpin vortex streamwise-aligned behind (upstream of) and
slightly below an omega-shaped hairpin structure in a coherent vortex packet. In this
scenario, the prograde vortex in quadrant three (figure 4c) would represent the head of
the upstream hairpin while the retrograde vortex would appear as part of the signature
of the downstream omega-shaped structure. However, given the packet inclination
angle observations of 12◦–20◦ by Adrian et al. (2000), estimates of streamwise spacings
of vortices in packets of approximately (0.15–0.2)δ by Christensen et al. (2004) at a
similar Re, and the observed spacing and angle of prograde/retrograde pairs in the
quadrant-one orientation, this scenario would yield a quadrant-three orientation with
a much larger spacing ((250–300)y∗) and a shallower angle (180◦–200◦) between the
vortices compared to that reported herein.

Alternatively, the pinch-off and reconnection of omega-shaped hairpin structures
into ring-like vortices also provides a consistent explanation for the quadrant-three
orientation. Bake et al. (2002) report that as omega-shaped hairpin structures in
a transitional boundary layer advect downstream, the head and shoulders of these
hairpins can, on occasion, pinch off at their legs, eventually leading to detachment of
their omega portions. When such a process occurs, the detached omega portions are
then observed to reconnect and form ring-like structures. Simultaneously, spanwise-
oriented vortical ‘bridges’ appear to form between the remaining legs (figure 11 in
Bake et al. 2002). If one were to slice through this pattern with a streamwise–wall-
normal measurement plane, one would observe a signature similar to that highlighted
in figure 7 (an instantaneous velocity realization from the present PIV ensemble): a
retrograde spanwise vortex (B) bounded by prograde cores both below (A) and above
(C). In such a scenario, the prograde core above the retrograde structure would
be associated with the detached ring-like structure while the prograde core below
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Figure 7. Example of a prograde hairpin vortex head (labelled A) oriented at approximately
255◦ relative to a neighbouring retrograde vortex (labelled B), as visualized by Galilean
decomposition of an instantaneous velocity realization with Uc = 0.79U∞.

would represent the imprint of the spanwise vortical ‘bridge’ that forms between the
remaining legs of the original hairpin. Further analysis, preferably with time-resolved
three-dimensional data at moderate Re, would shed additional light on the preferred
orientations observed herein.

This work was performed with funding from the Air Force Office of Scientific
Research under Grants FA9550-05-1-0043 and FA9550-05-1-0246 (Dr. John
Schmisseur, Program Manager) and the University of Illinois.

REFERENCES

Adrian, R. J., Meinhart, C. D. & Tomkins, C. D. 2000 Vortex organization in the outer region of
the turbulent boundary layer. J. Fluid Mech. 422, 1–54.

Bake, S., Meyer, G. W. & Rist, U. 2002 Turbulence mechanism in Klebanoff transition: A
quantitative comparison of experiment and direct numerical simulation. J. Fluid Mech. 459,
217–243.

Christensen, K. T., Wu, Y., Adrian, R. J. & Lai, W. 2004 Statistical imprints of structure in wall
turbulence. AIAA Paper 2004-1116.

Falco, R. E. 1977 Coherent motions in the outer region of turbulent boundary layers. Phys. Fluids
20 (10), S124–S132.

Falco, R. E. 1983 New results, a review and synthesis of the mechanism of turbulence production
in boundary layers and its modification. AIAA Paper 83-0377.

Falco, R. E. 1991 A coherent structure model of the turbulent boundary layer and its ability to
predict Reynolds number dependence. Phil. Trans. R. Soc. Lond. A 336, 103–129.

Ganapathisubramani, B., Longmire, E. K. & Marusic, I. 2003 Characteristics of vortex packets
in turbulent boundary layers. J. Fluid Mech. 478, 35–46.

Hambleton, W. T., Hutchins, N. & Marusic, I. 2006 Simultaneous orthogonal-plane particle
image velocimetry measurements in a turbulent boundary layer. J. Fluid Mech. 560, 53–64.

Head, M. R. & Bandyopadhyay, P. 1981 New aspects of turbulent boundary-layer structure.
J. Fluid Mech. 107, 297–338.

Klewicki, J. C. & Hirschi, C. R. 2004 Flow field properties local to near-wall shear layers in a
low Reynolds number turbulent boundary layer. Phys. Fluids 16, 4163–4176.



Spatial signatures of retrograde spanwise vortices in wall turbulence 167

Meinhart, C. D. 1994 Investigation of turbulent boundary-layer structure using particle-image
velocimetry. PhD thesis, Department of Theoretical and Applied Mechanics, University of
Illinois at Urbana-Champaign.

Moin, P., Leonard, A. & Kim, J. 1986 Evolution of a curved vortex filament into a vortex ring.
Phys. Fluids 29, 955–963.

Nagaosa, R. & Handler, R. A. 2003 Statistical analysis of coherent vortices near a free surface in
a fully developed turbulence. Phys. Fluids 15, 375–394.

Smith, C. R., Walker, J. D. A., Haidari, A. H. & Sobrun, U. 1991 On the dynamics of near-wall
turbulence. Phil. Trans. R. Soc. Lond A 336, 131–175.

Theodorsen, T. 1952 Mechanism of turbulence. In Proc. 2nd Midwestern Conference on Fluid
Mechanics , pp. 1–19. Ohio State University, Columbus, Ohio.

Tomkins, C. D. & Adrian, R. J. 2003 Spanwise structure and scale growth in turbulent boundary
layers. J. Fluid Mech. 490, 37–74.

Wu, Y. & Christensen, K. T. 2006 Population trends of spanwise vortices in wall turbulence.
J. Fluid Mech. 568, 55–76.

Zhou, J., Adrian, R. J., Balachandar, S. & Kendall, T. M. 1999 Mechanisms for generating
coherent packets of hairpin vortices in channel flow. J. Fluid Mech. 387, 353–396.




